Chapter

SAMPLING DISTRIBUTIONS

Objectives

In this chapter we will develop the idea of a sampling distribution, which is
central to classical statistical inference. In particular, we will

e describe sampling distributions. ¢ explore the Central Limit Theorem.
e show how the sample size is related to the accuracy ¢ demonstrate how the normal distribution can be
of the sample mean. used to approximate the binomial distribution.

5.1 Basic Ideas

An important goal of data analysis is to distinguish between features of the data that
reflect real biological facts and features that may reflect only chance effects. As
explained in Sections 1.3 and 2.8, the random sampling model provides a framework
for making this distinction. The underlying reality is visualized as a population,
the data are viewed as a random sample from the population, and chance effects
are regarded as sampling error—that is, discrepancy between the sample and the
population.

In this chapter we develop the theoretical background that will enable us to
place specific limits on the degree of sampling error to be expected in a study.
(Although in Chapter 1 we distinguished between an experimental study and an
observational study, for the present discussion we will call any scientific investiga-
tion a study.) As in earlier chapters, we continue to confine the discussion to the
simple context of a study with only one group (one sample).

Sampling Variability

The variability among random samples from the same population is called sampling
variability. A probability distribution that characterizes some aspect of sampling
variability is termed a sampling distribution. Usually a random sample will resemble
the population from which it came. Of course, we have to expect a certain amount of
discrepancy between the sample and the population. A sampling distribution tells us
how close the resemblance between the sample and the population is likely to be.

In this chapter we will discuss several aspects of sampling variability and study
an important sampling distribution. From this point forward, we will assume that the
sample size is a negligibly small fraction of the population size. This assumption sim-
plifies the theory because it guarantees that the process of drawing the sample does
not change the population composition in any appreciable way.
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Figure 5.1.1 Schematic
representation of study and
meta-study

The Meta-Study

According to the random sampling model, we regard the data in a study as a ran-
dom sample from a population. Generally we obtain only a single random sample,
which comes from a very large population. However, to visualize sampling vari-
ability we must broaden our frame of reference to include not merely one sam-
ple, but all the possible samples that might be drawn from the population. This
wider frame of reference we will call the meta-study. A meta-study consists of
indefinitely many repetitions, or replications, of the same study.* Thus, if the
study consists of drawing a random sample of size n from some population, the
corresponding meta-study involves drawing repeated random samples of size n
from the same population. The process of repeated drawing is carried on in-
definitely, with the members of each sample being replaced before the next
sample is drawn. The study and the meta-study are schematically represented in
Figure 5.1.1.

Study:

- Sample of n
Population

Meta-study:

Population Sample of n

Sample of n

Sample of n

etc.

*The term meta-study is not a standard term. It is unrelated to the term meta-analysis, which denotes a particu-
lar type of statistical analysis.
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The following two examples illustrate the notion of a meta-study.

Rat Blood Pressure A study consists of measuring the change in blood pressure in
each of n = 10 rats after administering a certain drug. The corresponding meta-
study would consist of repeatedly choosing groups of n = 10 rats from the
same population and making blood pressure measurements under the same
conditions. [

Bacterial Growth A study consists of observing bacterial growth in n = 5 petri dishes
that have been treated identically. The corresponding meta-study would consist
of repeatedly preparing groups of five petri dishes and observing them in the
same way. ]

Note that a meta-study is a theoretical construct rather than an operation that is
actually performed by a researcher.

The meta-study concept provides a link between sampling variability and
probability. Recall from Chapter 3 that the probability of an event can be inter-
preted as the long-run relative frequency of occurrence of the event. Choosing a
random sample is a chance operation; the meta-study consists of many repetitions
of this chance operation, and so probabilities concerning a random sample can be
interpreted as relative frequencies in a meta-study. Thus, the meta-study is a device
for explicitly visualizing a sampling distribution: The sampling distribution de-
scribes the variability, for a chosen statistic, among the many random samples in a
meta-study.

We consider a small (and artificial) example to illustrate the idea of a sampling
distribution.

Knee Replacement Consider a population of women age 65 to 75 who are experi-
encing pain in their knees and are candidates for knee replacement surgery. A
woman might have replacement surgery done on one knee at a cost of $35,000,
both knees at a cost of $60,000 (a “double replacement,” which is less expensive
than two single replacements), or neither knee. Consider the perspective of an in-
surance company regarding a sample of n = 3 women it insures: What is the
total cost for treating these three? The smallest the total could be is zero—if all
three women skip surgery—while the largest possible cost would be $180,000—if
all three women have double replacements. To keep things relatively simple,
suppose that one-fourth of women age 65 to 75 elect a double knee replace-
ment, one-half elect a single knee replacement, and one-fourth choose not to
have surgery.

The complete list of possible samples is given in Table 5.1.1, along with the
sample total (in thousands of dollars) in each case and the probability of each case
arising. For example, the probability that all three women skip surgery (“None,
None, None”) is (1/4) X (1/4) X (1/4) = 1/64 while the probability that the first
two women skip surgery and the third has a single knee operation (“None, None,
Single”) is (1/4) X (1/4) X (2/4) = 2/64. There are 10 possible values for the sam-
ple total: 0, 35, 60, 70, 95, 105, 120, 130, 155, and 180. The first and third columns of
Table 5.1.2 give the sampling distribution of the sample total by combining the
samples that yield the same total and summing their probabilities. For example,
there are three ways for the total to be 70, each of which has probability 4/64; these
sum to 12/64.
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Table 5.1.1 Total knee replacement costs for all possible samples of size n = 3
Costs
Sample (in units of $1,000) Sample total Probability

None, None, None 0,0,0 0 1/64
None, None, Single 0,0,35 35 2/64
None, None, Double 0,0,60 60 1/64
None, Single, None 0,35,0 35 2/64
None, Single, Single 0,35,35 70 4/64
None, Single, Double 0,35,60 95 2/64
None, Double, None 0,60,0 60 1/64
None, Double, Single 0,60,35 95 2/64
None, Double, Double 0,60,60 120 1/64
Single, None, None 35,0,0 35 2/64
Single, None, Single 35,0,35 70 4/64
Single, None, Double 35,0,60 95 2/64
Single, Single, None 35,350 70 4/64
Single, Single, Single 35,35,35 105 8/64
Single, Single, Double 35,35,60 130 4/64
Single, Double, None 35,60,0 95 2/64
Single, Double, Single 35,60,35 130 4/64
Single, Double, Double 35,60,60 155 2/64
Double, None, None 60,0,0 60 1/64
Double, None, Single 60,0,35 95 2/64
Double, None, Double 60,0,60 120 1/64
Double, Single, None 60,35,0 95 2/64
Double, Single, Single 60,35,35 130 4/64
Double, Single, Double 60,35,60 155 2/64
Double, Double, None 60,60,0 120 1/64
Double, Double, Single 60,60,35 155 2/64
Double, Double, Double 60,60,60 180 1/64

The second column of Table 5.1.2 shows the sample mean (rounded to one dec-
imal place) so that the last two columns of the table give the sampling distribution of
the sample mean. These two distributions, shown graphically in Figure 5.1.2, are
scaled versions of each other. An insurance company might speak in terms of total
cost, but this is equivalent to looking at average cost. m

Relationship to Statistical Inference

Knowing a sampling distribution allows one to make probability statements about
possible samples. For example, for the setting in Example 5.1.3 the insurance com-
pany might ask, What is the probability that the total knee replacement costs for a
sample of three women will be less than $110,000? We can answer this question by



Table 5.1.2 Sampling distribution of total surgery
costs for samples of size n = 3
Sample total Sample mean Probability
0 0.0 1/64
35 11.7 6/64
60 20.0 3/64
70 233 12/64
95 31.7 12/64
105 35.0 8/64
120 40.0 3/64
130 433 12/64
155 51.7 6/64
180 60.0 1/64
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Figure 5.1.2 Graph of the sampling distribution of
total surgery costs for samples of size n = 3

adding the probabilities of the first six outcomes listed in Table 5.1.2; the sum is
42/64. We will expand upon this idea as we formally develop ideas of statistical

inference.

Exercises 5.1.1-5.1.4

5.1.1 Consider taking a random sample of size 3 from the
knee replacement population of Example 5.1.3. What is
the probability that the total cost for those in the sample
will be greater than $125,000?

5.1.2 Consider taking a random sample of size 3 from the
knee replacement population of Example 5.1.3. What is
the probability that the total cost for those in the sample
will be between $80,000 and $125,000?

5.1.3 Consider taking a random sample of size 3 from the
knee replacement population of Example 5.1.3. What is

the probability that the mean cost for those in the sample
will be between $40,000 and $100,000?

5.1.4 Consider a hypothetical population of dogs in
which there are four possible weights, all of which are
equally likely: 42, 48, 52, or 58 pounds. If a sample of size
n = 2is drawn from this population, what is the sampling
distribution of the total weight of the two dogs selected?
That is, what are the possible values for the total and
what are the probabilities associated with each of those
values?

5.2 The Sample Mean

For a quantitative variable, the sample and the population can be described in vari-
ous ways— by the mean, the median, the standard deviation, and so on. The natures
(e.g., shape, center, spread) of the sampling distributions for these descriptive meas-
ures are not all the same. In this section we will focus primarily on the sampling
distribution of the sample mean.

The Sampling Distribution of Y

The sample mean y can be used, not only as a description of the data in the sam-
ple, but also as an estimate of the population mean . It is natural to ask, “How
close to w is y?” We cannot answer this question for the mean y of a particular
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Figure 5.2.1 Schematic
representation of the
sampling distribution of Y

Example
5.2.1

sample, but we can answer it if we think in terms of the random sampling model
and regard the sample mean as a random variable Y. The question then becomes:
“How close to u is Y likely to be?” and the answer is provided by the sampling
distribution of Y —that is, the probability distribution that describes sampling
variability in Y.

To visualize the sampling distribution of Y, imagine the meta-study as follows:
Random samples of size n are repeatedly drawn from a fixed population with mean
w and standard deviation o; each sample has its own mean y. The variation of the
y’s among the samples is specified by the sampling distribution of Y. This relation-
ship is indicated schematically in Figure 5.2.1.

Population Samples of size n Sampling distribution of Y

When we think of Y as a random variable, we need to be aware of two basic
facts. The first of these is intuitive: On average, the sample mean equals the popula-
tion mean. That is, the average of the sampling distribution of Y is w. The second fact
is not obvious: The standard deviation of Y is equal to the standard deviation of Y
divided by the square root of the sample size. That is, the standard deviation of Y is

o/\/n.

Serum Cholesterol The serum cholesterol levels of 12- to 14-year-olds follow a normal
distribution with mean u = 162 mg/dl and standard deviation o = 28 mg/dl.! If we
take a random sample, then we expect the sample mean to be near 162, with the
means of some samples being larger than 162 and the means of some samples being
smaller than 162. As the preceding formula indicates, the amount of variability in
the sample mean depends on the variability of cholesterol levels of the population,
o.If the population is very homogeneous (everyone has nearly the same cholesterol
value so that o is small), then samples and hence sample means would all be very
similar and thus exhibit low variability. If the population is very heterogenous (o is
large), then samples (and hence sample mean values) would vary more. While
researchers have little control over the value of o, we can control the sample size, n,
and n affects the amount of variability in the sample mean. If we take a sample of
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8§ 28
size n = 9, then the standard deviation of the sample mean is — = — = 9.3.This

V9 3
means, loosely speaking, that the sample mean, Y, will vary from one to sample to
the next by about 9.3 mg/dl.* If we took larger random samples of size n = 25, then

28 28
the standard deviaﬁtion of the sample mean would be smaller: Vs =35 " 5.6,
which means that ¥ would vary from one sample to the next by about 5.6. As the
sample size goes up, the variability in the sample mean Y goes down. [

We now state as a theorem the basic facts about the sampling distribution of Y.
The theorem can be proved using the methods of mathematical statistics; we
will state it without proof. The theorem describes the sampling distribution of Y in
terms of its mean (denoted by wy), its standard deviation (denoted by o), and its
shape.**

— Theorem 5.2.1: The Sampling Distribution of Y

1. Mean The mean of the sampling distribution of Y is equal to the population
mean. In symbols,

Ky = 1
2. Standard deviation The standard deviation of the sampling distribution of Y’

is equal to the population standard deviation divided by the square root of
the sample size. In symbols,

O'?:

<l

3. Shape

(a) If the population distribution of Y is normal, then the sampling distribu-
tion of Y is normal, regardless of the sample size n.

(b) Central Limit Theorem If n is large, then the sampling distribution of Y

is approximately normal, even if the population distribution of Y is not
normal.

Parts 1 and 2 of Theorem 5.2.1 specify the relationship between the mean and
standard deviation of the population being sampled, and the mean and standard
deviation of the sampling distribution of Y. Part 3(a) of the theorem states that, if
the observed variable Y follows a normal distribution in the population being sam-
pled, then the sampling distribution of Y is also a normal distribution. These rela-
tionships are indicated in Figure 5.2.2.

*Strictly speaking, the standard deviation measures deviation from the mean, not the difference between con-
secutive observations.

**We are assuming here that the population is infinitely large or, equivalently, that we are sampling with
replacement, so that we never exhaust the population. If we sample without replacement from a finite population
N —n

N -1

is called the finite population correction factor. Note that if the sample size n is 10% of the population

. . . L T
then an adjustment is needed to get the right value for 0. Here o is given by Va X The term
n

—n

[ 09N
size N, then the correction factor is N1 ~ (.95, so the adjustment is small. Thus, if » is small, in comparison

to N, then the finite population correction factor is close to 1 and can be ignored.
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Figure 5.2.2 (a) The
population distribution of

a ngrmally distributed o n
variable Y; (b) the g —
sampling distribution of Y i | | T T T T T
in samples from the s K

population of part (a) (a) (b)

The following example illustrates the meaning of parts 1, 2, and 3(a) of Theo-

rem 5.2.1.
Example Weights of Seeds A large population of seeds of the princess bean Phaseotus vulgaris
5.2.2 is to be sampled. The weights of the seeds in the population follow a normal distri-

bution with mean u = 500 mg and standard deviation ¢ = 120 mg.? Suppose now
that a random sample of four seeds is to be weighed, and let Y represent the mean
weight of the four seeds. Then, according to Theorem 5.2.1, the sampling distribution
of Y will be a normal distribution with mean and standard deviation as follows:

uy = m = 500 mg
and

o 120
Oy = W = ﬁ = 60 mg
Thus, on average the sample mean will equal 500 mg, but the variability from
one sample of size 4 to the next sample of size 4 is such that about two-thirds of the
time Y will be within 60 mg of 500 mg, that is, between 500 — 60 = 440 mg and
500 + 60 = 560 mg. Likewise, allowing for 2 standard deviations, we expect that Y’
will be within 120 mg of 500 mg or between 500 — 120 = 380 mg and
500 + 120 = 620 mg about 95% of the time. The sampling distribution of Y is

shown in Figure 5.2.3; the ticks are 1 standard deviation apart. [
Figure 5.2.3 Sampling T I 1 1 1 1 T
distribution of Y for 320 380 440 500 560 620 680 Y
Example 5.2.2 Sample mean weight (mg)

The sampling distribution of Y expresses the relative likelihood of the various
possible values of Y. For example, suppose we want to know the probability that the
mean weight of the four seeds will be greater than 550 mg. This probability is shown
as the shaded area in Figure 5.2.4. Notice that the value of y = 550 must be convert-
ed to the Z scale using the standard deviation o, = 60, not o = 120.

¥ 550 — 500

= 0.83



Figure 5.2.4 Calculation
of Pr{Y > 550} for
Example 5.2.2
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I [
500 550 Y

0 0.83

From Table 3, z = 0.83 corresponds to an area of 0.7967. Thus,

Pr{Y > 550} = Pr{Z > 0.83} = 1 — 0.7967
= 0.2033 ~ 0.20

This probability can be interpreted in terms of a meta-study as follows: If we
were to choose many random samples of four seeds each from the population, then
about 20% of the samples would have a mean weight exceeding 550 mg.

Part 3(b) of Theorem 5.2.1 is known as the Central Limit Theorem. The Central
Limit Theorem states that, no matter what distribution Y may have in the population,*
if the sample size is large enough, then the sampling distribution of Y will be ap-
proximately a normal distribution.

The Central Limit Theorem is of fundamental importance because it can be
applied when (as often happens in practice) the form of the population distribution
is not known. It is because of the Central Limit Theorem (and other similar theo-
rems) that the normal distribution plays such a central role in statistics.

It is natural to ask how “large” a sample size is required by the Central Limit
Theorem: How large must n be in order that the sampling distribution of Y be well
approximated by a normal curve? The answer is that the required n depends on the
shape of the population distribution. If the shape is normal, any n will do. If the
shape is moderately nonnormal, a moderate » is adequate. If the shape is highly
nonnormal, then a rather large n will be required. (Some specific examples of this
phenomenon are given in the optional Section 5.3.)

Remark We stated in Section 5.1 that the theory of this chapter is valid if the sam-
ple size is small compared to the population size. But the Central Limit Theorem is
a statement about large samples. This may seem like a contradiction: How can a
large sample be a small sample? In practice, there is no contradiction. In a typical
biological application, the population size might be 10% a sample of size n = 100
would be a small fraction of the population but would nevertheless be large enough
for the Central Limit Theorem to be applicable (in most situations).

Dependence on Sample Size

Consider the possibility of choosing random samples of various sizes from the same
population. The sampling distribution of Y will depend on the sample size n in two
ways. First, its standard deviation is

o

o =
Y v

*Technically, the Central Limit Theorem requires that the distribution of Y have a standard deviation. In
practice this condition is always met.
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Example
5.2.3

Table 5.2.1

n  Pr{450 = Y = 550}

0.59

0.79
16 091
64 0.999

Figure 5.2.5 Sampling
distribution of Y for
various sample sizes n

and this is inversely proportional to V7. Second, if the population distribution is not
normal, then the shape of the sampling distribution of Y depends on 7, being more
nearly normal for larger n. However, if the population distribution is normal, then
the sampling distribution of Y is always normal, and only the standard deviation
depends on n.

The more important of the two effects of sample size is the first: Larger n gives
a smaller value of oy and consequently a smaller expected sampling error if y is
used as an estimate of u. The following example illustrates this effect for sampling

from a normal population.

Weights of Seeds Figure 5.2.5 shows the sampling distribution of Y for samples of
various sizes from the princess bean population of Example 5.2.2. Notice that
for larger n the sampling distribution is more concentrated around the popula-
tion mean w = 500 mg. As a consequence, the probability that Y is close to it is
larger for larger n. For instance, consider the probability that Y is within +50 mg
of w, that is, Pr{450 = Y = 550}. Table 5.2.1 shows how this probability depends
on n. =

<

300 400 500 600 700
(a)
n=9
o Nn=40

~|

300 400 500 600 700

n=16
o Nn=30

~]

300 400 500 600 700

Example 5.2.3 illustrates how the closeness of Y to w depends on sample
size. The mean of a larger sample is not necessarily closer to it than the mean of a
smaller sample, but it has a greater probability of being close. It is in this sense that a
larger sample provides more information about the population mean than a smaller
sample.
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Figure 5.2.6 Three
distributions related

to Y = seed weight of
princess beans:

(a) population distribution
of Y; (b) distribution of

25 observations of Y;

(c) sampling distribution
of Y forn =25
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Populations, Samples, and Sampling Distributions

In thinking about Theorem 5.2.1, it is important to distinguish clearly among three
different distributions related to a quantitative variable Y: (1) the distribution of Y
in the population; (2) the distribution of Y in a sample of data, and (3) the sampling
distribution of Y. The means and standard deviations of these distributions are sum-
marized in Table 5.2.2.

Table 5.2.2
Distribution Mean Standard deviation
Y in population 7 T
Y in sample y s
. o
Y (in meta-study) uy = oy = W

The following example illustrates the distinction among the three distributions.

Weights of Seeds For the princess bean population of Example 5.2.2, the population
mean and standard deviation are . = 500 mg and o = 120 mg; the population dis-
tribution of Y = weight is represented in Figure 5.2.6(a). Suppose we weigh a ran-
dom sample of n = 25 seeds from the population and obtain the data in Table 5.2.3.

For the data in Table 5.2.3, the sample mean is y = 526.1 mg and the sample
standard deviation is s = 113.7 mg. Figure 5.2.6(b) shows a histogram of the data;
this histogram represents the distribution of Y in the sample. The sampling distribu-
tion of Y is a theoretical distribution which relates, not to the particular sample
shown in the histogram, but rather to the meta-study of repeated samples of size
n = 25.The mean and standard deviation of the sampling distribution are

uy = 500 mg and oy = 120/V25 = 24 mg

=500

100 300 500 700 900 Y
(a)
¥=5261 =500
s=113.7 o Nn=24

[ 1 [ I 1 [ | [ I [ I I I I |
100 300 500 700 900 Y 100 300 500 700 900 Y

(b) (©)

Table 5.2.3 Weights of twenty-five princess bean seeds
Weight (mg)

343 755 431 480 516 469 694

659 441 562 597 502 612 549

348 469 545 728 416 536 581

433 583 570 334
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Example
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The sampling distribution is represented in Figure 5.2.6(c). Notice that the distribu-
tions in Figures 5.2.6(a) and (b) are more or less similar; in fact, the distribution in
(b) is an estimate (based on the data in Table 5.2.3) of the distribution in (a). By con-
trast, the distribution in (c) is much narrower, because it represents a distribution of
means rather than of individual observations. ]

Other Aspects of Sampling Variability

The preceding discussion has focused on sampling variability in the sample mean, Y.
Two other important aspects of sampling variability are (1) sampling variability in
the sample standard deviation, s and (2) sampling variability in the shape of the
sample, as represented by the sample histogram. Rather than discuss these aspects
formally, we illustrate them with the following example.

Weights of Seeds In Figure 5.2.6(b) we displayed a random sample of 25 observations
from the princess bean population of Example 5.2.2; now we display in Figure 5.2.7
eight additional random samples from the same population. (All nine samples were
actually simulated using a computer.) Notice that, even though the samples were
drawn from a normal population [pictured in Figure 5.2.6(a)], there is very substan-
tial variation in the forms of the histograms. Notice also that there is considerable
variation in the sample standard deviations. Of course, if the sample size were larger
(say, n = 100 rather than n = 25), there would be less sampling variation; the his-
tograms would tend to resemble a normal curve more closely, and the standard devi-

100 300 500
y=481 (a)
s =104

T T T
100 300 500

=502 (d)
5=137

Figure 5.2.7 Eight
random samples, each of
size n = 25, from a normal
population with u = 500
and o = 120

ations would tend to be closer to the population value (o = 120). ]
11 [T 1T T T1T T 1T"T"T"1
700 900 100 300 500 700 900 100 300 500 700 900
y=538 (b) y =445 (c)
s=119 s=113
11 T Tr1T T 1T"T"1T"1 11 1T 171
700 900 100 300 500 700 900 100 300 500 700 900
y=461 (e) =488 ()
s=119 s=118
—] —
[ T 1T 1T T T T 1T T"1T"
100 300 500 700 900 100 300 500 700 900
y=518 (2) y=514 (h)
s=134 s=112
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5.2.1 (Sampling exercise) Refer to Exercise 1.3.5. The
collection of 100 ellipses shown there can be thought of
as representing a natural population of the organism
C. ellipticus. Use your judgment to choose a sample of 5
ellipses that you think should be reasonably representa-
tive of the population. (In order to best simulate the anal-
ogous judgment in a real-life setting, you should make
your choice intuitively, without any detailed preliminary
study of the population.) With a metric ruler, measure the
length of each ellipse in your sample. Measure only the
body, excluding any tail bristles; measurements to the
nearest millimeter will be adequate. Compute the mean
and standard deviation of the five lengths. To facilitate
the pooling of results from the entire class, express the
mean and standard deviation in millimeters, keeping two
decimal places.

5.2.2 (Sampling exercise) Proceed as in Exercise 5.2.1,
but use random sampling rather than “judgment” sam-
pling. To do this, choose 10 random digits (from Table 1 or
your calculator). Let the first 2 digits be the number of
the first ellipse that goes into your sample, and so on. The
10 random digits will give you a random sample of five
ellipses.

5.2.3 (Sampling exercise) Proceed as in Exercise 5.2.2,
but choose a random sample of 20 ellipses.

5.2.4 Refer to Exercise 5.2.2. The following scheme is
proposed for choosing a sample of 5 ellipses from the
population of 100 ellipses. (i) Choose a point at random
in the ellipse “habitat” (that is, the figure); this could be
done crudely by dropping a pencil point on the page, or
much better by overlaying the page with graph paper and
using random digits. (ii) If the chosen point is inside an
ellipse, include that ellipse in the sample, otherwise start
again at step (i). (iii) Continue until 5 ellipses have been
selected. Explain why this scheme is not equivalent to
random sampling. In what direction is the scheme
biased —that is, would it tend to produce a y that is too
large, or a y that is too small?

5.2.5 The serum cholesterol levels of a population of 12-
to 14-year-olds follow a normal distribution with mean
162 mg/dl and standard deviation 28 mg/dl (as in
Example 4.1.1).

(a) What percentage of the 12- to 14-year-olds have
serum cholesterol values between 152 and 172 mg/d1?

(b) Suppose we were to choose at random from the
population a large number of groups of nine 12- to
14-year-olds each. In what percentage of the groups
would the group mean cholesterol value be between
152 and 172 mg/dl1?

(c) IfY represents the mean cholesterol value of a ran-
dom sample of nine 12- to 14-year-olds from the pop-
ulation, what is Pr{152 = Y = 172}?

5.2.6 An important indicator of lung function is forced
expiratory volume (FEV), which is the volume of air that
a person can expire in one second. Dr. Hernandez plans
to measure FEV in a random sample of n young women
from a certain population, and to use the sample mean y
as an estimate of the population mean. Let E be the event
that Hernandez’s sample mean will be within +100 ml
of the population mean. Assume that the population
distribution is normal with mean 3,000 ml and standard
deviation 400 m1. Find Pr{E} if

(a) n=15
(b) n =060

(¢) How does Pr{E} depend on the sample size? That is,
as n increases, does Pr{E} increase, decrease, or stay
the same?

5.2.7 Refer to Exercise 5.2.6. Assume that the popula-
tion distribution of FEV is normal with standard devia-
tion 400 ml.

(a) Find Pr{E} if n = 15 and the population mean is
2,800 ml.

(b) Find Pr{E} if n = 15 and the population mean is
2,600 ml.

(¢) How does Pr{E} depend on the population mean?

5.2.8 The heights of a certain population of corn plants
follow a normal distribution with mean 145 cm and stan-
dard deviation 22 cm (as in Exercise 4.S.4).

(a) What percentage of the plants are between 135 and
155 cm tall?

(b) Suppose we were to choose at random from the
population a large number of samples of 16 plants
each. In what percentage of the samples would
the sample mean height be between 135 and
155 cm?

(c) If Y represents the mean height of a random sam-
ple of 16 plants from the population, what is
Pr{135 = Y = 155}?

(d) If Y represents the mean height of a random sam-
ple of 36 plants from the population, what is
Pr{135 = Y = 155}?

5.2.9 The basal diameter of a sea anemone is an indica-
tor of its age. The density curve shown here represents
the distribution of diameters in a certain large population
of anemones; the population mean diameter is 4.2 cm,
and the standard deviation is 1.4 cm.* Let Y represent the
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mean diameter of 25 anemones randomly chosen from
the population.

I I I I I |
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Diameter (cm)

(a) Find the approximate value of Pr{4 < Y = 5}.

(b) Why is your answer to part (a) approximately cor-
rect even though the population distribution of
diameters is clearly not normal? Would the same
approach be equally valid for a sample of size 2
rather than 25? Why or why not?

5.2.10 In a certain population of fish, the lengths of the
individual fish follow approximately a normal distribu-
tion with mean 54.0 mm and standard deviation 4.5 mm.
We saw in Example 4.3.1 that in this situation 65.68% of
the fish are between 51 and 60 mm long. Suppose a ran-
dom sample of four fish is chosen from the population.
Find the probability that

(a) all four fish are between 51 and 60 mm long.

(b) the mean length of the four fish is between 51 and
60 mm.

5.2.11 In Exercise 5.2.10, the answer to part (b) was larger
than the answer to part (a). Argue that this must necessar-
ily be true, no matter what the population mean and stan-
dard deviation might be. [Hint: Can it happen that the
event in part (a) occurs but the event in part (b) does not?]

5.2.12 Professor Smith conducted a class exercise in
which students ran a computer program to generate ran-
dom samples from a population that had a mean of 50
and a standard deviation of 9 mm. Each of Smith’s stu-
dents took a random sample of size n and calculated the
sample mean. Smith found that about 68% of the stu-
dents had sample means between 48.5 and 51.5 mm.
What was n? (Assume that n is large enough that the
Central Limit Theorem is applicable.)

5.2.13 A certain assay for serum alanine aminotrans-
ferase (ALT) is rather imprecise. The results of repeated
assays of a single specimen follow a normal distribution
with mean equal to the ALT concentration for that speci-
men and standard deviation equal to 4 U/l (as in Exercise
4.8.15). Suppose a hospital lab measures many specimens
every day, and specimens with reported ALT values of 40
or more are flagged as “unusually high.” If a patient’s
true ALT concentration is 35 U/L, find the probability that
his specimen will be flagged as “unusually high”

(a) if the reported value is the result of a single assay.

(b) if the reported value is the mean of three independ-
ent assays of the same specimen.

5.2.14 The mean of the distribution shown in the follow-
ing histogram is 162 and the standard deviation is 18.
Consider taking random samples of size n = 9 from this
distribution and calculating the sample mean, y, for each
sample.

[ [ [ [ |
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(a) What is the mean of the sampling distribution of Y'?

(b) What is the standard deviation of the sampling distri-
bution of Y'?

5.2.15 The mean of the distribution shown in the follow-
ing histogram is 41.5 and the standard deviation is 4.7.
Consider taking random samples of size n = 4 from this
distribution and calculating the sample mean, y, for each
sample.

[ [ [ |
30 40 50 60

(a) What is the mean of the sampling distribution of Y'?

(b) What is the standard deviation of the sampling distri-
bution of Y'?

5.2.16 Refer to the histogram in Exercise 5.2.15. Suppose
that 100 random samples are taken from this population
and the sample mean is calculated for each sample. If we
were to make a histogram of the distribution of the sam-
ple means from 100 samples, what kind of shape would
we expect the histogram to have

(a) if n = 2 for each random sample?
(b) if n = 25 for each random sample?

5.2.17 Refer to the histogram in Exercise 5.2.15. Suppose
that 100 random samples are taken from this population
and the sample mean is calculated for each sample. If
we were to make a histogram of the distribution of the
sample means from 100 samples, what kind of shape
would we expect the histogram to have if n = 1 for each
random sample? That is, what does the sampling distribu-
tion of the mean look like when the sample sizeisn = 1?



Section 5.3 Illustration of the Central Limit Theorem (Optional)

5.2.18 A medical researcher measured systolic blood
pressure in 100 middle-aged men.’ The results are dis-
played in the accompanying histogram; note that the dis-
tribution is rather skewed. According to the Central
Limit Theorem, would we expect the distribution of
blood pressure readings to be less skewed (and more bell
shaped) if it were based on n = 400 rather than n = 100

159

5.2.19 The partial pressure of oxygen, PaO,, is a measure
of the amount of oxygen in the blood. Assume that the
distribution of PaO, levels among newborns has an aver-
age of 38 (mm Hg) and a standard deviation of 9.5 If we
take a sample of size n = 25,

(a) what is the probability that the sample average will

men? Explain.

be greater than 367

(b) what is the probability that the sample average will
be greater than 41?

80 100 120 140

| [ |

160 180 200 220

Blood pressure (mm Hg)

Example
5.3.1

Figure 5.3.1 Distribution
of eye-facet number in a
Drosophila population

5.3 lllustration of the Central Limit Theorem
(Optional)

The importance of the normal distribution in statistics is due largely to the Central
Limit Theorem and related theorems. In this section we take a closer look at the
Central Limit Theorem. According to the Central Limit Theorem, the sampling dis-
tribution of Y is approximately normal if n is large. If we consider larger and larger
samples from a fixed nonnormal population, then the sampling distribution of ¥ will
be more nearly normal for larger n. The following examples show the Central Limit
Theorem at work for two nonnormal distributions: a moderately skewed distribu-
tion (Example 5.3.1) and a highly skewed distribution (Example 5.3.2).

Eye Facets The number of facets in the eye of the fruitfly Drosophila melanogaster is
of interest in genetic studies. The distribution of this variable in a certain Drosophila
population can be approximated by the density function shown in Figure 5.3.1. The
distribution is moderately skewed; the population mean and standard deviation are
w=064ando =22

Figure 5.3.2 shows the sampling distribution of Y for samples of various sizes
from the eye-facet population. In order to clearly show the shape of these distribu-
tions, we have plotted them to different scales; the horizontal scale is stretched more
for larger n. Notice that the distributions are somewhat skewed to the right, but the
skewness is diminished for larger n; for n = 32 the distribution looks very nearly
normal. [

I I I I I I I
20 40 60 80 100 120 140

Number of facets
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Figure 5.3.2 Sampling
distributions of Y for
samples from the
Drosophila eye-facet
population

Example
5.3.2

Figure 5.3.3 Distribution
of time scores in a button-
pushing task
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Reaction Time A psychologist measured the time required for a person to reach up
from a fixed position and operate a pushbutton with his or her forefinger. The dis-
tribution of time scores (in milliseconds) for a single person is represented by the
density shown in Figure 5.3.3. About 10% of the time, the subject fumbled, or
missed the button on the first thrust; the resulting delayed times appear as the sec-
ond peak of the distribution.® The first peak is centered at 115 ms and the second
at 450 ms; because of the two peaks, the overall distribution is violently skewed.
The population mean and standard deviation are u = 148 ms and o = 105 ms,
respectively.

I I |
200 400 600

Time score (ms)

o —

Figure 5.3.4 shows the sampling distribution of Y for samples of various sizes
from the time-score distribution. To show the shape clearly, the Y scale has been
stretched more for larger n. Notice that for small n the distribution has several
modes. As n increases, these modes are reduced to bumps and finally disappear, and
the distribution becomes increasingly symmetric. m
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distributions of Y for
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Example
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Examples 5.3.1 and 5.3.2 illustrate the fact, mentioned in Section 5.2, that the
meaning of the requirement “r is large” in the Central Limit Theorem depends on
the shape of the population distribution. Approximate normality of the sampling
distribution of Y will be achieved for a moderate n if the population distribution is
only moderately nonnormal (as in Example 5.3.1), while a highly nonnormal popu-
lation (as in Example 5.3.2) will require a larger n.

Note, however, that Example 5.3.2 indicates the remarkable strength of the
Central Limit Theorem. The skewness of the time-score distribution is so extreme
that one might be reluctant to consider the mean as a summary measure. Even in
this “worst case,” you can see the effect of the Central Limit Theorem in the relative
smoothness and symmetry of the sampling distribution for n = 64.

The Central Limit Theorem may seem rather like magic. To demystify it some-
what, we look at the time-score sampling distributions in more detail in the follow-
ing example.

Reaction Time Consider the sampling distributions of Y displayed in Figure 5.3.4.
Consider first the distribution for n = 4, which is the distribution of the mean of
four button-pressing times. The high peak at the left of the distribution represents
cases in which the subject did not fumble any of the 4 thrusts, so that all four times
were about 115 ms; such an outcome would occur about 66% of the time [from the
binomial distribution, because (0.9)* = 0.66]. The next lower peak represents cases
in which 3 thrusts took about 115 ms each, while one was fumbled and took about
450 ms. (Notice that the average of three 115’s and one 450 is about 200, which is
the center of the second peak.) Similarly, the third peak (which is barely visible)
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represents cases in which the subject fumbled 2 of the 4 thrusts. The peaks repre-
senting 3 and 4 fumbles are too low to be visible in the plot.

Now consider the plot for n = 8. The first peak represents 8 good thrusts (no
fumbles), the second represents 7 good thrusts and 1 fumble, the third represents 6
good thrusts and 2 fumbles, and so on. The fourth and later peaks are blended
together. For n = 16 it is more likely to see 15 good thrusts and 1 fumble than 16
good thrusts (as you can verify from the binomial distribution) and thus there is a
bump, corresponding to 16 good thrusts, below the overall peak, which corresponds
to 15 good thrusts; the bump to the right of the peak corresponds to 14 good thrusts
and 2 fumbles. For n = 32, the most likely outcome is 3 fumbles and 29 good thrusts;

this outcome gives a mean time of about

(3)(450) + (29)(115) 1

46 ms

32

which is the location of the central peak. For similar reasons, the distribution for
larger n is centered at about 148 ms, which is the population mean. [

Exercises 5.3.1-5.3.3

5.3.1 Refer to Example 5.3.3. In the sampling distribu-
tion of Y for n = 4 (Figure 5.3.4), approximately what is
the area under

(a) the first peak?
(b) the second peak?
(Hint: Use the binomial distribution.)
5.3.2 Refer to Example 5.3.3. Consider the sampling distri-
bution of Y for n = 2 (which is not shown in Figure 5.3.4).

(a) Make a rough sketch of the sampling distribution.
How many peaks does it have? Show the location
(on the Y-axis) of each peak.

(b) Find the approximate area under each peak. (Hint:
Use the binomial distribution.)

5.3.3 Refer to Example 5.3.3. Consider the sampling
distribution of Y for n =1 (which is not shown in
Figure 5.3.4). Make a rough sketch of the sampling distri-
bution. How many peaks does it have? Show the location
(on the Y-axis) of each peak.

5.4 The Normal Approximation to the Binomial
Distribution (Optional)

The Central Limit Theorem tells us that the sampling distribution of a mean
becomes bell shaped as the sample size increases. Suppose we have a large dichoto-
mous population for which we label the two types of outcomes as “1” (for “success”
and “0” (for “failure”). If we take a sample and calculate the average number of 1’s,
then this sample average is just the sample proportion of 1’s—commonly labeled as
P —and is governed by the Central Limit Theorem. This means that if the sample
size n is large, then the distribution of P will be approximately normal.

Note that if we know the number of 1’s (i.e., the number of successes in 7 trials),
then we know the proportion of 1’s and vice versa. Thus, the normal approximation
to the binomial distribution can be expressed in two equivalent ways: in terms of the
number of successes, Y, or in terms of the proportion of successes, P . We state both
forms in the following theorem. In this theorem, n represents the sample size (or,
more generally, the number of independent trials) and p represents the population
proportion (or, more generally, the probability of success in each independent trial).
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Figure 5.4.1 The normal
approximation (blue curve)
to the binomial distribution
(black spikes) with n = 50
and p = 03
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— Theorem 5.4.1: Normal Approximation to Binomial Distribution

(a) If nislarge, then the binomial distribution of the number of successes, Y, can
be approximated by a normal distribution with

Mean = np
and

Standard deviation = Vnp(l — p)

(b) If n is large, then the sampling distribution of P can be approximated by a
normal distribution with

Mean = p

1 —
Standard deviation = p(ﬁp)

and

Remarks

1. Appendix 5.1 provides more detailed explanation of the relationship between
the normal approximation to the binomial and the Central Limit Theorem.

2. Asshown in Appendix 3.2, for a population of 0’s and 1’s, where the proportion
of 1’s is given by p, the standard deviation is 0 = V p(1 — p). Theorem 5.2.1

_ S o . 5
stated that the standard deviation of a mean is given by ——. We think of P in

n
part (b) of Theorem 5.2.1 as a special kind of sample average, for the setting in
which all of the data are 0’s and 1’s. Thus, Theorem 5.2.1 tells us that the standard

Ve -p)
Vn o
result stated in Theorem 5.4.1(b).

o 5 rd-p) . ,
deviation of P should be T P which agrees with the

The following example illustrates the use of Theorem 5.4.1.

Normal Approximation to Binomial We consider a binomial distribution with n = 50
and p = 0.3. Figure 5.4.1(a) shows this binomial distribution, using spikes to repre-
sent probabilities; superimposed is a normal curve with

Mean = np = (50)(0.3) = 15

and

SD = Vnp(1 — p) = V/(50)(0.3)(0.7) = 3.24

[ [ [ | |
10 15 20 25 30

Number of successes P

(@) (b)

0.0 0.1 0.2 0.3 04 05 0.6

o —
W
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Figure 5.4.2 Normal
approximation to the
probability of at least 18
successes

Note that the curve fits the distribution fairly well. Figure 5.4.1(b) shows the sam-
pling distribution of P for n = 50 and p = 0.3; superimposed is a normal curve
with

Mean = p = 0.3

and

Sp - \/p(l - _ \/(0.3)(0.7> 00648
n 50

Note that Figure 5.4.1(b) is just a relabeled version of Figure 5.4.1(a).

To illustrate the use of the normal approximation, let us find the probability that
50 independent trials result in at least 18 successes. We could use the binomial for-
mula to find the probability of exactly 18 successes in 50 trials and add this to the
probability of exactly 19 successes, exactly 20 successes, and so on:

Pr{at least 18 successes} = 5,C15(0.3)!8(1 — 0.3)0718
+ 50C19(0.3)°(1 — 03)0° P+
0.0772 + 0.0558 +... = 0.2178

This probability can be visualized as the area above and to the right of the “18” in
Figure 5.4.2. The normal approximation to the probability is the corresponding area
under the normal curve, which is shaded in Figure 5.4.2. The z value that corre-
sponds to 18 is

18 — 15
© 32404 0.93
0 5 10 15 20 25 30

Number of successes

From Table 3, we find that the areais 1 — 0.8238 = (0.1762, which is reasonably
close to the exact value of 0.2178. This approximation can be improved by account-
ing for the fact that the binomial distribution is discrete and the normal distribution
is continuous as we shall see below. [

The Continuity Correction

As we have seen in Chapter 4, because the normal distribution is continuous, prob-
abilities are computed areas under the normal curve, rather than being the height of
the normal curve at any particular value. Because of this, to compute Pr{Y = 18},
the probability of 18 successes, we think of “18” as covering the space from 17.5 to
18.5 and thus we consider the area under the normal curve between 17.5 and 18.5;
this is illustrated in Figure 5.4.3. Likewise, to get a more accurate approximation in
Example 5.4.1, we can use 17.5 in place of 18 when finding the z value. Each of these
is an example of a continuity correction.
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Figure 5.4.3 Normal
approximation to the

probability of exactly 18 0 5 10 15 20 25 30
successes Number of successes
Example Applying continuity correction within the normal approximation, the probability of
5.4.2 at least 18 successes in 50 trials, when p = 0.3,1is approximated by finding
17.5 — 15
=———=077
3.2404

From Table 3, we find that the area above 0.77 is 1 — 0.7794 = 0.2206, which agrees
quite well with the exact value of 0.2178. This area is displayed in Figure 5.4.4. m

Figure 5.4.4 Improved
normal approximation to

the probability of at least 0 5 10 15 20 25 30
18 successes Number of successes

Example To illustrate part (b) of Theorem 5.4.1, we again assume that n = 50 and p = 0.3.
5.4.3 Consider finding the probability that at least 40% of the 50 trials in a binomial
experiment with p = 0.3 result in successes. That is, we wish to find Pr{P = 0.40}.
The normal approximation to this probability is the shaded area in Figure 5.4.5.
Using continuity correction, the boundary of the area is p = 19.5/50 = 0.39, which

corresponds on the Z scale to

039 — 030

0068

Z

The resulting approximation (from Table 3) is then

Pr{P = 040} ~ 1 — 0.9177 = 0.0823

Figure 5.4.5 Normal 0.0 0.1 02 0.3 0.4 0.5 0.6
approximation to N
Pr{P = 0.40} p

which agrees very well with the exact value of 0.0848 (found by using the binomial
formula). ]
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Example
5.4.4

Exercises 5.4.1-5.4.13

Remark Any problem involving the normal approximation to the binomial can be
solved in two ways: in terms of Y, using part (a) of Theorem 5.4.1, or in terms of P,
using part (b) of the theorem. Although it is natural to state questions in terms of
proportions (e.g., “What is Pr{P > 0.70}?”), it is often easier to solve problems in
terms of the binomial count Y (e.g., “What is Pr{Y > 35}?”), particularly when using
continuity correction. The following example illustrates the approach of convert-
ing a question about a sample proportion into a question about the number of suc-
cesses for a binomial random variable.

Consider a binomial distribution with n = 50 and p = 0.3. The sample proportion
of successes, out of the 50 trials, is £. Figure 5.4.1(b) shows the sampling distribution
of P with a normal curve superimposed. R

Suppose we wish to find the probability that 0.24 = P = 0.36. Since P = Y/50,
this is the probability that 0.24 = Y/50 = 0.36, which is the same as the probability
that 12 = Y = 18.Thatis, Pr{0.24 = P = 0.36} = Pr{I2 = Y = 18}.

We know that Y has a binomial distribution with mean = np = (50)(0.3) = 15
and SD = \/np(l - p)= \/(50)(0.3)(0.7) = 3.24. Using continuity correction,
we would find the Z scale values of

11.5 - 15
= —— = —1.
3.24 08
and
18.5 — 15
z= 34 = 1.08

Then, using Table 3, we have Pr{0.24 = P = 0.36) = Pr{12 = Y = 18} ~ 0.8599 —
0.1401 = 0.7198. =

How Large Must n Be?

Theorem 5.4.1 states that the binomial distribution can be approximated by a nor-
mal distribution if n is “large.” It is helpful to know how large » must be in order for
the approximation to be adequate. The required n depends on the value of p. If
p = 0.5, then the binomial distribution is symmetric and the normal approximation
is quite good even for n as small as 10. However, if p = 0.1, the binomial distribu-
tion for n = 10 is quite skewed, and is poorly fitted by a normal curve; for larger n
the skewness is diminished and the normal approximation is better. A simple rule of
thumb is the following:

The normal approximation to the binomial distribution is fairly good if both
np and n(1 — p) are at least equal to 5.

For example, if n» = 50 and p = 0.3, as in Example 5.4.4, then np = 15 and
n(l — p) = 35;since 15 = 5 and 35 = 5, the rule of thumb indicates that the nor-
mal approximation is fairly good.

5.4.1 A fair coin is to be tossed 20 times. Find the proba- (a) using the binomial distribution formula.
bility that 10 of the tosses will fall heads and 10 will fall (b)) using the normal approximation with the continuity

tails,

correction.



5.4.2 In the United States, 44% of the population has
type O blood. Suppose a random sample of 12 persons is
taken. Find the probability that 6 of the persons will have
type O blood (and 6 will not)

(a) using the binomial distribution formula.
(b) using the normal approximation.

5.4.3 Refer to Exercise 5.4.2. Find the probability that at
most 6 of the persons will have type O blood by using the
normal approximation

(a) without the continuity correction.
(b) with the continuity correction.

5.4.4 An epidemiologist is planning a study on the
prevalence of oral contraceptive use in a certain popula-
tion.” She plans to choose a random sample of # women
and to use the sample proportion of oral contraceptive
users (P) as an estimate of the population proportion (p)
Suppose that in fact p = 0.12. Use the normal approxi-
mation (with the continuity correction) to determine the
probability that P will be within +0.03 of pif

(a) n = 100.

(b) n = 200.

[Hint: If you find using part (b) of Theorem 5.4.1 to be
difficult here, try using part (a) of the theorem instead.]

5.4.5 In a study of how people make probability judg-
ments, college students (with no background in probabil-
ity or statistics) were asked the following question.'® A
certain town is served by two hospitals. In the larger hos-
pital about 45 babies are born each day, and in the small-
er hospital about 15 babies are born each day. As you
know, about 50% of all babies are boys. The exact per-
centage of baby boys, however, varies from day to day.
Sometimes it may be higher than 50%, sometimes lower.
For a period of one year, each hospital recorded the
days on which at least 60% of the babies born were boys.
Which hospital do you think recorded more such days?

e The larger hospital
® The smaller hospital
e About the same (i.e., within 5% of each other)

(a) Imagine that you are a participant in the study. Which
answer would you choose, based on intuition alone?

(b) Determine the correct answer by using the normal
approximation (without the continuity correction) to
calculate the appropriate probabilities.

5.4.6 Consider random sampling from a dichotomous
population with p = 0.3, and let E be the event that Pis

5.5 Perspective
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within £0.05 of p. Use the normal approximation (with-
out the continuity correction) to calculate Pr{E} for a
sample of size n = 400.

5.4.7 Refer to Exercise 5.4.6. Calculate Pr{E} for n = 40
(rather than 400) without the continuity correction.

5.4.8 Refer to Exercise 5.4.6. Calculate Pr{E} for n = 40
(rather than 400) with the continuity correction.

5.4.9 A certain cross between sweet-pea plants will pro-
duce progeny that are either purple flowered or white
flowered;'! the probability of a purple-flowered plant is
p= 96 Suppose n progeny are to be examined, and let P
be the sample proportion of purple-flowered plants. It
might happen by chance, that P would be closer to 2
than to ¢ 16 Find the probability that this misleading event
would occur if

(a) n=1.
(b) n = 64.
(c) n = 320.

(Use the normal approximation without the continuity
correction.)

5.4.10 Cytomegalovirus (CMV) is a (generally benign)
virus that infects one-half of young adults.!? If a random
sample of 10 young adults is taken, find the probability
that between 30% and 40% (inclusive) of those sampled
will have CMYV,

(a) using the binomial distribution formula.

(b) using the normal approximation with the continuity
correction.

5.4.11 In a certain population of mussels (Mytilus edulis),
80% of the individuals are infected with an intestinal par-
asite.!> A marine biologist plans to examine 100 randomly
chosen mussels from the population. Find the probability
that 85% or more of the sampled mussels will be in-
fected, using the normal approximation without the
continuity correction.

5.4.12 Refer to Exercise 5.4.11. Find the probability that
85% or more of the sampled mussels will be infected, using
the normal approximation with the continuity correction.

5.4.13 Refer to Exercise 5.4.11. Suppose that the bio-
logist takes a random sample of size 50. Find the proba-
bility that fewer than 35 of the sampled mussels will be
infected, using the normal approximation

(a) without the continuity correction.
(b) with the continuity correction.

In this chapter we have presented the concept of a sampling distribution and have
focused on the sampling distribution of Y. Of course, there are many other impor-
tant sampling distributions, such as the sampling distribution of the sample standard
deviation and the sampling distribution of the sample median.
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Let us take another look at the random sampling model in the light of
Chapter 5. As we have seen, a random sample is not necessarily a representative
sample.* But using sampling distributions, one can specify the degree of representa-
tiveness to be expected in a random sample. For instance, it is intuitively plausible
that a larger sample is likely to be more representative than a smaller sample from
the same population. In Sections 5.1 and 5.2 we saw how a sampling distribution can
make this vague intuition precise by specifying the probability that a specified
degree of representativeness will be achieved by a random sample. Thus, sampling
distributions provide what has been called “certainty about uncertainty.”*

In Chapter 6 we will see for the first time how the theory of sampling distribu-
tions can be put to practical use in the analysis of data. We will find that, although
the calculations of Chapter 5 seem to require the knowledge of unknowable quanti-
ties (such as u and o), when analyzing data one can nevertheless estimate the prob-
able magnitude of sampling error using only information contained in the sample
itself.

In addition to their application to data analysis, sampling distributions provide a
basis for comparing the relative merits of different methods of analysis. For exam-
ple, consider sampling from a normal population with mean u. Of course, the sam-
ple mean Y is an estimator of u. But since a normal distribution is symmetric, it is
also the population median, so the sample median is also an estimator of u. How,
then, can we decide which estimator is better? This question can be answered in
terms of sampling distributions, as follows: Statisticians have determined that, if the
population is normal, the sample median is inferior to the sample mean in the sense
that its sampling distribution, while centered at u, has a standard deviation larger

ag
than —=.
Vn

Consequently, the sample median is less efficient (as an estimator of w) than
the sample mean; for a given sample size n, the sample median provides less
information about u than does the sample mean. (If the population is not normal,
however, the sample median can be much more efficient than the mean.)

*It is true, however, that sometimes the investigator can force the sample to be representative with respect to
some variable (not the one under study) whose population distribution is known; for example, a stratified ran-
dom sample as discussed in Section 1.3. The methods of analysis given in this book, however, are only appropri-
ate for simple random samples and cannot be applied without suitable modification.

Supplementary Exercises 5.5.1-5.5.12

(Note: Exercises preceded by an asterisk refer to option-
al sections.)

5.S.1 In an agricultural experiment, a large field of wheat
was divided into many plots (each plot being 7 X 100 ft)
and the yield of grain was measured for each plot. These
plot yields followed approximately a normal distribution
with mean 88 1b and standard deviation 7 1b (as in Exer-
cise 4.3.5). Let Y represent the mean yield of five plots
chosen at random from the field. Find Pr{Y > 90}.

5.5.2 Consider taking a random sample of size 14 from
the population of students at a certain college and meas-
uring the diastolic blood pressure each of the 14 students.
In the context of this setting, explain what is meant by the
sampling distribution of the sample mean.

5.5.3 Refer to the setting of Exercise 5.S.2. Suppose that
the population mean is 70 mmHg and the population
standard deviation is 10 mmHg. If the sample size is 14,
what is the standard deviation of the sampling distribu-
tion of the sample mean?

5.5.4 The heights of men in a certain population follow a
normal distribution with mean 69.7 inches and standard
deviation 2.8 inches.!

(a) Ifaman ischosen at random from the population, find
the probability that he will be more than 72 inches tall.

(b) If two men are chosen at random from the popula-
tion, find the probability that (i) both of them will be
more than 72 inches tall; (ii) their mean height will
be more than 72 inches.



5.5.5 Suppose a botanist grows many individually potted
eggplants, all treated identically and arranged in groups
of four pots on the greenhouse bench. After 30 days
of growth, she measures the total leaf area Y of each
plant. Assume that the population distribution of Y
is approximately normal with mean = 800 cm’? and
SD = 90 cm®.'

(a) What percentage of the plants in the population will

have leaf area between 750 cm” and 850 cm??

(b) Suppose each group of four plants can be regarded
as a random sample from the population. What per-
centage of the groups will have a group mean leaf
area between 750 cm? and 850 cm??

5.5.6 Refer to Exercise 5.S.5. In a real greenhouse, what
factors might tend to invalidate the assumption that each
group of plants can be regarded as a random sample from
the same population?

*5.5.7 Consider taking a random sample of size 25 from
a population in which 42% of the people have type A
blood. What is the probability that the sample proportion
with type A blood will be greater than 0.44? Use the
normal approximation to the binomial with continuity
correction.

5.5.8 The activity of a certain enzyme is measured by
counting emissions from a radioactively labeled molecule.
For a given tissue specimen, the counts in consecutive
10-second time periods may be regarded (approxi-
mately) as repeated independent observations from a
normal distribution (as in Exercise 4.S.1). Suppose the
mean 10-second count for a certain tissue specimen is
1,200 and the standard deviation is 35. For that specimen,
let Y represent a 10-second count and let Y represent
the mean of six 10-second counts. Both Y and Y are
unbiased—they each have an average of 1,200—but
that doesn’t imply that they are equally good. Find
Pr{1,175 = Y = 1,225} and Pr{1,175 = Y = 1,225}, and

Section 5.5 Perspective 169

compare the two. Does the comparison indicate that
counting for one minute and dividing by 6 would tend to
give a more precise result than merely counting for a sin-
gle 10-second time period? How?

5.5.9 In a certain lab population of mice, the weights at
20 days of age follow approximately a normal distribu-
tion with mean weight = 8.3 gm and standard deviation
= 1.7 gm."” Suppose many litters of 10 mice each are to
be weighed. If each litter can be regarded as a random
sample from the population, what percentage of the lit-
ters will have a total weight of 90 gm or more? (Hint:
How is the total weight of a litter related to the mean
weight of its members?)

5.5.10 Refer to Exercise 5.S.9. In reality, what factors
would tend to invalidate the assumption that each litter
can be regarded as a random sample from the same
population?

5.5.11 Consider taking a random sample of size 25 from
a population of plants, measuring the weight of each
plant, and adding the weights to get a sample total. In the
context of this setting, explain what is meant by the sam-
pling distribution of the sample total.

5.5.12 The skull breadths of a certain population of
rodents follow a normal distribution with a standard
deviation of 10 mm. Let Y be the mean skull breadth of a
random sample of 64 individuals from this population,
and let u be the population mean skull breadth.

(a) Suppose u = 50mm. Find Pr{Yis within £2 mm
of u}.

(b) Suppose w = 100 mm. Find Pr{Y is within +2 mm
of u}.

(c) Suppose u is unknown. Can you find Pr{Yis

within +2 mm of u}? If so, do it. If not, explain why
not.



